
UNIT
TESTING

101

FROM ZERO TO HERO

CESAR AGUIRRE

CESAR AGUIRRE

Do you want to start writing unit tests? But, you don’t know where to start? If you’re a
beginner or a seasoned developer new to unit testing, this is the place for you.

In this ebook, you will find how to start writing your first unit tests, the most common
mistakes when writing them and how to name your unit tests. This ebook is based on a
series of posts I wrote on my blog about unit testing every two weeks for more than
two months.

In Chapter 1, you will learn what a unit test is and why you should write them. I won’t try
to sell you the concept of unit testing. I will only give you one single reason: the
confidence to change your codebase. In this chapter, you will write your first tests for
Stringie, a (fictional) library to manipulate strings, using C# and MSTest.

In Chapter 2, you will learn 4 common mistakes we make when writing our first unit
tests. Among them, you will learn not to duplicate the tested logic inside your test suite.
I’ve seen this mistake a lot.

In Chapter 3, you will zoom in to one of the mistakes: naming conventions. You will
learn 5 common naming conventions. You will see the same tests named following 5
different naming conventions.

In the Appendix, you will find some of my notes on the book “The Art of Unit Testing”, a
must-read on the topic of unit testing. Also, you will find the tips and best practices
from all my posts on this series: from naming to mocking, in a single place.

You can follow along with the code in every chapter. Clone the GitHub repository at:
Testing101. You will find Stringie source code and exercises for each chapter.

I hope this ebook can help you write your first unit tests and include them in your own
codebase. If you want to learn more about unit testing, visit my blog.

If this eBook helps you, feel free to share it.

Happy testing!

DO YOU WANT TO START WRITING UNIT TESTS?

Introduction

https://bit.ly/imcsarag
https://github.com/canro91/Testing101
https://github.com/canro91/Testing101
http://bit.ly/imcsarag

CESAR AGUIRRE

The book "The Art of Unit Testing" defines a unit test as...

LET'S SEE WHAT A UNIT TEST IS AND HOW TO WRITE ONE IN C#

Have you ever needed to change your code, but you were concerned about breaking
something? I've been there too.

The main reason to write unit tests is to gain confidence. Unit tests allow us to make
changes with confidence that they will work. Unit tests allow change.

Unit tests work like a "safety net" to prevent us from breaking things when we add
features or change our codebase.

In addition, unit tests work like living documentation. The first end-user of our code is
our unit tests. If we want to know what a library does, we should check its unit tests.
Often, we will find not-documented features in the tests.

WHY SHOULD WE WRITE UNIT TESTS?

Let's write our first unit tests

"an automated piece of code that invokes a unit of work in
the system and then checks a single assumption about the
behavior of that unit of work"

From the previous definition, a unit of work is any logic exposed through public
methods. Often, a unit of work returns a value, changes the internals of the system, or
makes an external invocation.

If that definition answers how to test public methods, we might ask: 'What about
private methods?' Short answer: we don't test them. We test private methods when we
call our code through its public methods.

In short, a unit test is code that invokes some code under test and verifies a given
behavior of that code.

CESAR AGUIRRE

WHAT MAKES A GOOD UNIT TEST?

Now, we know what a unit test is and why we should write them. The next question we
need to answer is: 'What makes a test a good unit test?' Let's see what all good unit
tests have in common.

The longer our tests take to run, the less frequent we run them. And, if we don't run
our tests often, we have doors opened to bugs.

 OUR TESTS SHOULD RUN QUICKLY

Tests shouldn't depend on the output of previous tests to run. A test should create its
own state and not rely upon the state of other tests.

OUR TESTS SHOULD RUN IN ANY ORDER

No matter how many times we run our tests, they should either fail or pass every time.
We don't want our test to use random input, for example.

OUR TESTS SHOULD BE DETERMINISTIC

We shouldn't debug our tests to make sure they passed or failed. Each test should
determine the success or failure of the tested behavior. Imagine we have hundreds of
tests and to make sure they pass, we have to debug every one of them. What's the
point, then?

OUR TESTS SHOULD VALIDATE THEMSELVES

"It could be considered unprofessional to write code
without tests"
- Robert Martin, The Clean Coder

CESAR AGUIRRE

LET'S WRITE OUR FIRST UNIT TEST

Let's write some unit tests for Stringie, a (fictional) library to manipulate strings with
more readable methods.

One of Stringie methods is Remove(). It removes chunks of text from a string. For
example, Remove() receives a substring to remove. Otherwise, it returns an empty
string if we don't pass any parameters.

"Hello, world!".Remove("Hello");
// ", world!"

"Hello, world!".Remove();
// ""

Here's the implementation of the Remove() method for the scenario without
parameters.

namespace Stringie
{
 public static class RemoveExtensions
 {
 public static RemoveString Remove(this string source)
 {
 return new RemoveString(source);
 }
 }

 public class RemoveString
 {
 private readonly string _source;

 internal RemoveString(string source)
 {
 _source = source;
 }

 public static implicit operator string(RemoveString removeString)
 {
 return removeString.ToString();
 }

 public override string ToString()
 {
 return _source != null ? string.Empty : null;
 }
 }
}

CESAR AGUIRRE

Let's write some tests for the Remove() method. We can write a Console program to
test these two scenarios.

using Stringie;
using System;

namespace TestProject
{
 class Program
 {
 static void Main(string[] args)
 {
 var helloRemoved = "Hello, world!".Remove("Hello");
 if (helloRemoved == ", world!")
 {
 Console.WriteLine("Remove Hello OK");
 }
 else
 {
 Console.WriteLine($"Remove Hello failed. Expected: ', world!'."

 + "But it was: '{helloRemoved}'");
 }

 var empty = "Hello, world!".Remove();
 if (string.IsNullOrEmpty(empty))
 {
 Console.WriteLine("Remove: OK");
 }
 else
 {
 Console.WriteLine($"Remove failed. Expected: ''."

+ " But it was: {empty}");
 }

 Console.ReadKey();
 }
 }
}

However, these aren't real unit tests. They run quickly, but they don't run in any order,
 and they don't validate themselves. We have to inspect the Console to check if our
tests pass or fail.

Let's create a new project. Let's add to the solution containing Stringie a new project of
type "MSTest Test Project (.NET Core)". Since we're adding tests for the Stringie project,
let's name our new test project Stringie.UnitTests.

It's my recommendation, to put our unit tests in a test project named after the project
they test. We can add the suffix "Tests" or "UnitTests". For example, if we have a library
called MyLibrary, we should name our test project: MyLibrary.UnitTests.

In our new test project, let's add a reference to the Stringie project.

After adding the new test project, Visual Studio created a file UnitTest1.cs. Let's
rename it! We are adding tests for the Remove() method, let's name this file:
RemoveTests.cs.

One way of making our tests easy to find and group is to put our unit tests separated in
files named after the unit of work or entry point of the code we're testing. Let's add the
suffix "Tests". For a class MyClass, let's name our file: MyClassTests.

CESAR AGUIRRE

WHERE SHOULD WE PUT OUR TESTS?

Visual Studio Solution Explorer with our new test project

If you want to follow along, check my Unit Testing 101
repository over on GitHub.

https://github.com/canro91/Testing101

Now, let's see what's inside our RemoveTests.cs file.

It contains one normal class and method. However, they're annotated with two unusual
attributes: [TestClass] and [TestMethod]. These attributes tell Visual Studio that our
file contains unit tests to run.

The [TestClass] and [TestMethod] attributes belong to a project called MSTest.
Microsoft Test Framework (MSTest) is an open-source unit testing framework. MSTest
comes installed with Visual Studio.

Unit testing frameworks help us to write and run unit tests. Also, they create reports
with the results of our tests. Other common unit testing frameworks include NUnit and
XUnit.

CESAR AGUIRRE

MSTEST: MICROSOFT TEST FRAMEWORK

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Stringie.UnitTests
{
 [TestClass]
 public class RemoveTests
 {
 [TestMethod]
 public void TestMethod1()
 {
 }
 }
}

"Unit tests work like a 'safety net' to prevent us from
breaking things when we add features or change our
codebase."

https://github.com/microsoft/testfx
https://nunit.org/
https://xunit.net/

Let's replace the name TestMethod1 with a name that follows a naming convention.

We should use naming conventions to show the feature tested and the purpose behind
our tests. Tests names should tell what they're testing.

A name like TestMethod1 doesn't say anything about the code under test and the
expected result.

One naming convention for our test names uses a sentence to tell what they're testing.
Often these names start with the prefix "ItShould" followed by an action.

For our Remove() method, it could be: ItShouldRemoveASubstring() and
ItShouldReturnEmpty().

IT SHOULD

CESAR AGUIRRE

HOW SHOULD WE NAME OUR TESTS?

Tests names should tell what they're testing.

Another convention uses underscores to separate the unit of work, the test scenario,
 and the expected behavior in our test names.

If we follow this convention for our example tests, we name our tests:
Remove_ASubstring_RemovesThatSubstring() and
Remove_NoParameters_ReturnsEmpty().

With this convention, we can read our test names out loud like this: "When calling
Remove with a substring, then it removes that substring".

Following the second naming convention, our tests look like this:

UNITOFWORK_SCENARIO_EXPECTEDRESULT

CESAR AGUIRRE

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Stringie.UnitTests
{
 [TestClass]
 public class RemoveTests
 {
 [TestMethod]
 public void Remove_ASubstring_RemovesThatSubstring()
 {
 }

 [TestMethod]
 public void Remove_NoParameters_ReturnsEmpty()
 {
 }
 }
}

These names could look funny at first glance. We should use compact names in our
code. However, when writing unit tests, readability is important. Every test should state
the scenario under test and the expected result. We shouldn't worry about long test
names.

Now, let's write the body of our tests.

To write our tests, let's follow the Arrange/Act/Assert (AAA) principle. Each test should
contain these three parts.

In the Arrange part, we create input values to call the entry point of the code under
test.

In the Act part, we call the entry point to trigger the logic being tested.

In the Assert part, we verify the expected behavior of the code under test.

Let's use the AAA principle to replace our two examples with real tests. Also, let's use
line breaks to visually separate the AAA parts.

CESAR AGUIRRE

HOW SHOULD WE WRITE OUR TESTS?

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Stringie.UnitTests
{
 [TestClass]
 public class RemoveTests
 {
 [TestMethod]
 public void Remove_ASubstring_RemovesThatSubstring()
 {
 string str = "Hello, world!";

 string transformed = str.Remove("Hello");

 Assert.AreEqual(", world!", transformed);
 }

 [TestMethod]
 public void Remove_NoParameters_ReturnsEmpty()
 {
 string str = "Hello, world!";

 string transformed = str.Remove();

 Assert.AreEqual(0, transformed.Length);
 }
 }
}

We used the Assert class from MSTest to write the Assert part of our test. This class
contains methods like AreEqual(), IsTrue() and IsNull().

The AreEqual() method checks if the result from a test is equal to an expected value. In
our test, we used it to verify the length of the transformed string. We expect it to be
zero.

CESAR AGUIRRE

Let's use a known value in the Assert part instead of repeating the logic under test in
the assertions. It's OK to hardcode some expected values in our tests. We shouldn't
repeat the logic under test in our assertions. For example, we can use well-named
constants for our expected values.

Here's an example of how not to write the Assertion part of our second test.

DON'T REPEAT LOGIC IN THE ASSERTIONS

[TestMethod]
public void Remove_ASubstring_RemovesThatSubstring()
{
 string str = "Hello, world!";

 string transformed = str.Remove("Hello");

 var position = str.IndexOf("Hello");
 var expected = str.Substring(position + 5);
 Assert.AreEqual(expected, transformed);
}

Notice how it uses the Substring() method in the Assert part, to find the string without
the Hello substring. A better alternative is to use the expected result, ", world!", in the
AreEqual() method.

"Unit tests work like living documentation. If you want
to know what a library does, check its unit tests."

To run a test, let's right-click on the [TestMethod] attribute of the test and use "Run
Test(s)". Visual Studio will compile your solution and run the test you clicked on.

After the test runs, let's go to the "Test Explorer" menu. There we will find the list of
tests. A passed test has a green icon. If we don't have the "Test Explorer", we can use
the "View" menu in Visual Studio and click "Test Explorer" to display it.

[TestMethod]
public void Remove_ASubstring_RemovesThatSubstring()
{
 string str = "Hello, world!";

 string transformed = str.Remove("Hello");

 // Here we use the expected result ", world!"
 Assert.AreEqual(", world!", transformed);
}

Let's rewrite our last test to use an expected value instead of repeating the logic being
tested.

CESAR AGUIRRE

HOW CAN WE RUN A TEST INSIDE VISUAL STUDIO?

That's a passing test! Hurray!

If the result of a test isn't what was expected, the Assertion methods will throw an
AssertFailedException. This exception or any other unexpected exception flags a test
as failed.

Visual Studio 'Test Explorer' showing our first passing test

CESAR AGUIRRE

MSTEST CHEATSHEET

A unit test is code that invokes some code under test and verifies a given behavior of that code.
The main reason to write unit tests is to gain confidence.
Tests names should tell what they’re testing. Every test should state the scenario under test and
the expected result.
Follow the Arrange/Act/Assert (AAA) principle.
Use known values in the Assert part instead of repeating the logic under test in the assertions.

SUMMARY

These are some of the most common Assertion methods in MSTest.

Assert.AreEqual Check if the expected value is equal to the found value
Assert.AreNotEqual Check if the expected value isn't equal to the found value

Assert.IsTrue Check if the found value is true
Assert.IsFalse Check if the found value is false

Assert.IsNull Check if the found value is null
Assert.IsNotNull Check if the found value isn't null

Assert.ThrowsException Check if a method throws an exception
Assert.ThrowsExceptionAsync Check if an async method throws an exception

StringAssert.Contains Check if a string contains a substring
StringAssert.Matches Check if a string matches a regular expression
StringAssert.DoesNotMatch Check if a string doesn't matches a regular expression

CollectionAssert.AreEquivalent Check if two collections contain the same elements
CollectionAssert.AreNotEquivalent Check the opposite of the previous assertion

CollectionAssert.Contains Check if a collection contains an element
CollectionAssert.DoesNotContain Check if a collection doesn't contain an element

CESAR AGUIRRE

In Chapter 1, we covered how to write our first unit tests with C# and MSTest. We
started from a Console program and converted it into our first unit tests. We wrote
those tests for Stringie, a (fictional) library to manipulate strings with more readable
methods.

In this chapter, we will cover how NOT to write unit tests. Let's learn four common
mistakes we should avoid when writing our first unit tests.

4 COMMON MISTAKES WHEN WRITING OUR FIRST UNIT TESTS

Let's fix our tests

First, keep your tests in the right place. Have one test project per project, one test class
per class. Add the suffix "Tests" in the name of your test projects and classes.

Choose a naming convention for your test names and stick to it.

In Chapter 1, we covered two naming conventions. An "ItShould" sentence and the
"UnitOfWork_Scenario_ExpectedResult", a three-part name separated with underscores.
You can choose the one you like the most.

That time, for Stringie Remove() method, following the
"UnitOfWork_Scenario_ExpectedResult" convention, we wrote test names like these ones:

DO NOT FOLLOW A NAMING CONVENTION

[TestClass]
public class RemoveTests
{
 [TestMethod]
 public void Remove_ASubstring_RemovesThatSubstring() { }

 [TestMethod]
 public void Remove_NoParameters_ReturnsEmpty() { }
}

Follow the Arrange/Act/Assert principle. Separate the body of your tests to visually
differentiate these three parts.

For the Assert part of your tests, make sure to use an assertion library. MSTest, NUnit,
 and XUnit are the three most popular ones for C#.

Use the right assertion methods of your library. For example, MSTest has assertion
methods for strings, collections, and other objects. For a list of the most common
MSTest assertions methods, check the Cheatsheet at the end of Chapter 1.

Please, don't do.

DO NOT USE THE RIGHT ASSERTION METHODS

CESAR AGUIRRE

Assert.AreEqual(null, result);
// or
Assert.AreEqual(true, anotherResult);

Every test name should tell the scenario under test and the expected result. We
shouldn't worry about long test names. But, let's stop naming our tests: Test1, Test2,
and so on.

Don't prefix your test names with "Test". If we're using a testing framework that
doesn't need keywords in our test names, let's stop doing that. With MSTest, we have
attributes like [TestClass] and [TestMethod] to mark our methods as tests.

Also, don't use filler words like "Success" or "IsCorrect" in your test names.
Instead, let's tell what "success" and "correct" means for that test. Is it a successful test
because it doesn't throw exceptions? Is it successful because it returns a value? Make
your test names easy to understand.

For more naming conventions, check Chapter 3: "Let's name
our tests"

Have only one Act and Assert part in your tests. Don't repeat the same Act part with
different test values in a single test.

Please, avoid writing tests like this one.

[TestMethod]
public void Remove_SubstringWithDifferentCase_RemovesSubstring()
{
 var str = "Hello, world!";

 var transformed = str.RemoveAll("Hello").IgnoringCase();
 Assert.AreEqual(", world!", transformed);

 transformed = str.RemoveAll("HELLO").IgnoringCase();
 Assert.AreEqual(", world!", transformed);

 transformed = str.RemoveAll("HeLlO").IgnoringCase();
 Assert.AreEqual(", world!", transformed);
}

DO NOT HAVE A SINGLE ASSERTION PER TEST

CESAR AGUIRRE

Here, we tested the same method with different test values in a single test.

Assert.IsNull(result);
// or
Assert.IsTrue(anotherResult);

Do, instead.

"Every test name should tell the scenario under test
and the expected result"

This time, to avoid repetition, we put the test values in an array and looped through
them to test each value.

If we want to test the same scenario with different test values, let's use parameterized
tests.

CESAR AGUIRRE

Replace the [TestMethod] attribute with the [DataTestMethod] attribute in your
test.
Add [DataRow] attributes for each set of test values.
Add parameters for each test value inside the [DataRow] attributes.
Use the input parameters in your test to arrange, act or assert.

To write a parameterized test with MSTest, we can follow these steps:

PARAMETERIZED TESTS WITH MSTEST

Also, avoid writing tests like this one.

[TestMethod]
public void Remove_SubstringWithDifferentCase_RemovesSubstring()
{
 var str = "Hello, world!";

 var testCases = new string[]
 {
 "Hello",
 "HELLO",
 "HeLlO"
 };
 string transformed;
 foreach (var str in testCases)
 {
 transformed = str.RemoveAll("Hello").IgnoringCase();
 Assert.AreEqual(", world!", transformed);
 }
}

[DataTestMethod]
[DataRow("Hello")]
[DataRow("HELLO")]
[DataRow("HeLlo")]
public void Remove_SubstringWithDifferentCase_RemovesSubstring(

string substringToRemove)
{
 var str = "Hello, world!";

 var transformed = str.RemoveAll(substringToRemove).IgnoringCase();

 Assert.AreEqual(", world!", transformed);
}

Let's convert the previous test with many test values into a parameterized test.

CESAR AGUIRRE

With parameterized tests, we have separate tests. Inside Visual Studio, in the "Test
Explorer" menu, we will have one result per each [DataRow] attribute in the parent
test.

Parameterized tests make troubleshooting easier when we have a test that fails for a
single test value.

Visual Studio 'Test Explorer' showing the result outcomes for our
parameterized test

CESAR AGUIRRE

For this test, instead of using the Substring() method to remove the input string, use a
known expected value. Write Assert.AreEqual("Hello,", transformed). For example,

[TestMethod]
public void Remove_ASubstring_RemovesThatSubstringFromTheEnd()
{
 string str = "Hello, world!";

 string transformed = str.Remove("world!").From(The.End);

 // Let's use a known value in our assertions
 Assert.AreEqual("Hello,", transformed)
}

[TestMethod]
public void Remove_ASubstring_RemovesThatSubstringFromTheEnd()
{
 string str = "Hello, world!";

 string transformed = str.Remove("world!").From(The.End);

 var position = str.IndexOf("world!");
 var expected = str.Substring(0, position);
 Assert.AreEqual(expected, transformed);
}

I can't stress this enough. Don't repeat the logic under test in your assertions. Use
known, hard-coded, pre-calculated values instead.

We shouldn't copy the tested logic and paste it in a private method in our tests to use it
in our assertions. We will have code and bugs in two places.

Please, don't write assertions like the one in this test.

REPEAT LOGIC IN YOUR ASSERTIONS

CESAR AGUIRRE

Choose a naming convention for your test names and stick to it.
Don't prefix test names with "Test". Don't use filler words like "Success" or "IsCorrect".
Separate the body of your tests to visually differentiate the three AAA parts.
Have only one Act and Assert part in your tests.
Use parameterized tests to test the same scenario with different test values.
Don't repeat the logic under test in your assertions. Use known/pre-calculated values instead.

SUMMARY

Voilà! These are four common mistakes we make when writing our first unit tests.

Remember to put your test in the right places following a naming convention. Also,
keep one assertion per test, and don't repeat logic in your assertions. You will have
better tests avoiding these four mistakes.

CESAR AGUIRRE

In Chapter 2, we learned 4 common mistakes we make when writing our first unit tests.
One of them is not to follow a naming convention. In Chapter 1, we covered two
naming conventions, let's bring back those two and see three new naming conventions
for our unit tests.

Test names should tell the scenario under test and the expected results. Long
names are acceptable when writing unit tests since test names show the purpose
behind what they're testing. Write better test names instead of assertions messages.

Let's continue to use Stringie, a (fictional) library to manipulate string. Stringie has a
Remove() method to remove a substring from the beginning or the end of an input
string. When Remove() receives no parameters, it returns an empty string.

5 NAMING CONVENTIONS FOR BETTER TEST NAMES

Let's name our tests

This first naming convention uses a sentence to tell what we're testing in each test. We
start these names with the prefix "ItShould" followed by an action.

For our Remove() method, it could be: ItShouldRemoveASubstring and
ItShouldReturnEmpty.

ITSHOULD

[TestClass]
public class RemoveTests
{
 [TestMethod]
 public void ItShouldRemoveASubstring() { }

 [TestMethod]
 public void ItShouldReturnEmpty() { }
}

CESAR AGUIRRE

We find this naming convention in the book "The Art of Unit Testing". This convention
uses underscores to separate the unit of work or entry point, the test scenario, and the
expected behavior.

With this convention, we can read our test names out loud like this: "When calling
Remove with no parameters, then it returns empty".

UNITOFWORK_SCENARIO_EXPECTEDRESULT

[TestClass]
public class RemoveTests
{
 [TestMethod]
 public void Remove_NoParameters_ReturnsEmpty() {}

 [TestMethod]
 public void Remove_ASubstring_RemovesOnlyASubstring() {}
}

Don't worry about long test names

CESAR AGUIRRE

Unlike the "UnitOfWork_Scenario_ExpectedResult" convention, this convention strives
for a less rigid name structure.

This convention uses sentences in plain English for test names. We describe in a
sentence what we're testing in a language easy to understand even for non-
programmers. For more readability, we separate each word in our sentence with
underscores.

This convention considers smells adding method names and filler words like "should"
or "should be" in our test names. For example, instead of writing,
should_remove_only_a_substring(), we should write removes_only_a_substring().

You could read more about this convention in You are naming your tests wrong!

PLAIN ENGLISH SENTENCE

[TestClass]
public class RemoveTests
{
 [TestMethod]
 public void Returns_empty_with_no_parameters() {}

 [TestMethod]
 public void Removes_only_a_substring() {}
}

"Don't use assertion messages. Write better test
names"

https://enterprisecraftsmanship.com/posts/you-naming-tests-wrong/

This naming convention uses sentences in plain English too. In this case, class names
will act as the subject of our sentences and method names as the verb and the
complement. We write the unit of work or entry point in class names and the expected
result in method names.

Also, we can split different scenarios into separate classes. We add the scenarios in
class names with the work Given followed by the scenario under test.

For our Remove() method, we can name our test class RemoveGivenASubstring and
our test methods RemovesOnlyASubstring() and RemovesSubstringFromTheEnd().

With this convention, we can read our test names like full sentences in the “Test
Explorer” menu in Visual Studio when we group our tests by class. Like this: “Remove,
given a substring, removes that substring”.

[TestClass]
public class RemoveGivenASubstring
{
 [TestMethod]
 public void RemovesThatSubstring() {}

 [TestMethod]
 public void RemovesThatSubstringFromTheEnd() {}
}

CESAR AGUIRRE

SENTENCE FROM CLASSES AND METHODS NAMES

Visual Studio 'Solution Explorer' showing a our sample tests grouped by class

This last convention uses sentences split into class and method names too. Unlike the
previous naming convention, each scenario has its own nested class.

For example, instead of having a test class RemoveGivenASubstring, we create a
nested class GivenASubstring inside a RemoveTests class.

Voilà! That's how we can name our unit tests. Remember naming things is hard. Pick
one of these five naming conventions and stick to it. But, if you inherit a codebase,
prefer the convention already in use. I hope you can write more readable test names
now.

[TestClass]
public class RemoveTests
{
 [TestMethod]
 public void ReturnsEmpty() {}

 [TestClass]
 public class GivenASubstring
 {
 [TestMethod]
 public void RemovesThatSubstring() {}

 [TestMethod]
 public void RemovesThatSubstringFromTheEnd() {}
 }
}

CESAR AGUIRRE

NESTED CLASSES AND METHODS

Choose a naming convention for your test names and stick to it.
Long names are acceptable when writing unit tests since test names show the purpose behind
what they're testing.
Don't write assertion messages, write better test names instead.
Write test names easy to understand even for non-programmers.

SUMMARY

CESAR AGUIRRE

This is THE book to learn how to write unit tests. It starts from the definition of a unit
test to how to implement them at the organization level. Although it covers extensively
the subject, it doesn’t advocate writing unit tests before or after the production code.

“The Art of Unit Testing” teaches us to treat tests the same way we treat production
code. Sometimes, we write unit tests without the same care and attention we put into
production code.

These are some of the main ideas from "The Art Of Unit Testing".

THE ART OF UNIT TESTING: TAKEAWAYS

Let's learn more

A test is trustworthy if you don't have to debug it to make sure it passes.

To write trustworthy tests, avoid any logic in your tests. If you have conditionals
and loops in your tests, you have logic in them.

You can find logic in helper methods, fakes, and assert statements. To avoid logic in the
assert statements, use hardcoded values instead.

Tests with logic are hard to read and replicate. A unit test should consist of method
calls and assert statements.

WRITE TRUSTWORTHY TESTS

Keep a set of always-passing unit tests. You will need some configurations for your
integration tests: a database connection, environment variables, or some files in a
folder. Integration tests will fail if those configurations aren't in place. So, developers
could ignore some failing tests, and real issues, because of those missing
configurations.

Therefore, separate your unit tests from your integration tests. Put them in
different projects. This way, you will distinguish between a missing setup and an actual
problem with your code.

HAVE A SAFE GREEN ZONE

CESAR AGUIRRE

Use builders instead of SetUp methods. Tests should be isolated from other tests.
Sometimes, SetUp methods create shared state among our tests. We will find tests that
pass in isolation but don’t pass alongside other tests and tests that need to be run
many times to pass.

Often SetUp methods end up with initialization for only some tests. Tests should create
their own world. Therefore, initialize what’s needed inside every test using builders.

BUILDERS VS SETUP METHODS

"Write readable, maintainable and trustworthy tests"

Have a unit test project per project and a test class per class. You should easily find
tests for your classes and methods.

Create separate projects for your unit and integration tests. Add the suffix
"UnitTests" and "IntegrationTests" accordingly.

Create tests inside a file with the same name as the tested code adding the suffix
"Tests". You can group features in separate files adding the name of the feature as a
suffix. For example, "MyClassTests.AnAwesomeFeature".

ORGANIZE YOUR TESTS

Voilà! These are some of my takeaways. The main lesson from this book is to write
readable, maintainable and trustworthy tests. Remember the next person reading your
tests will be you.

CESAR AGUIRRE

Unit Testing Best Practices
ON NAMING

Every test name should tell the scenario under test and the expected result

Write your test names in a language easy to understand even for non-programmers

Don't prefix your test names with "Test"

Don't use filler words like "Success" or "IsCorrect" in test names

ON ORGANIZATION

Put your tests in a test project named after the project they test

Put your tests in files named after the entry point of the code you're testing

ON ASSERTIONS

Use line breaks to visually separate the three AAA parts in the body of your tests

Don't repeat the logic under test in your assertions

Don't make private methods public to test them

Have a single Act and Assert parts in your tests

Use the right assertion methods of your testing framework: IsNull vs IsTrue

Prefer assertion methods for strings like Contains, Matches and StartsWith

ON TEST DATA

Use factory methods to reduce complex Arrange scenarios

Make your scenario under test and test values extremely obvious

Use object mothers to create input test values

Prefer Builders to create complex object graphs

ON STUBS AND MOCKS

Use fakes when you depend on external systems you don't control

Avoid complex logic inside your fakes

Don't write assertions for stubs

Keep one mock per test

Make tests set their own values for fakes

If you have reached this point, you know the basics to start your
unit testing journey. We covered how to write your first unit
tests with C# and MSTest, how to structure your tests, what
mistakes to avoid, and how to name your tests. But, this isn't the
end. Unit testing is a broad subject.

For more content about unit testing, stay tuned to my Unit
Testing 101 series on my blog.

I didn't have the chance to introduce myself. Hola, I'm Cesar
Aguirre! A software engineer, lifelong learner, language
enthusiast, and vivid reader. I'm a software engineer working
remotely from Colombia (not Columbia). I help teams to write
maintainable and performant backend code. You can find me
online on my blog, dev.to, GitHub and LinkedIn.

Feel free to share, email, and redistribute this ebook.

Happy testing!

THAT'S ALL FOLKS!

CESAR AGUIRRE

https://bit.ly/UT101Ebook
https://bit.ly/imcsarag
https://dev.to/canro91
https://github.com/canro91
https://linkedin.com/in/iamcesaraguirre

